REACTION OF SUBSTITUTED FLAVONES WITH THIONYL AND SULPHURYL CHLORIDES

J. R. MERCHANT and D. V. REGE

Department of Organic Chemistry, Madam Cama Road, Bombay-32, India

(Received in the UK 25 March 1971; Accepted for publication 26 April 1971)

Abstract—Thionyl chloride reacts with 6-methyl- and 7-methoxyflavones to yield the 3-chloro derivatives in both cases. Reaction of the above flavones with sulphuryl chloride gives two compounds with the former flavone and 4 compounds with the latter. All the structures have been established on the basis of spectral data and the hydrolysis products.

IN OUR preliminary communication^{1, 2} we reported the reaction of thionyl chloride $(SOCl_2)$ and sulphuryl chloride (SO_2Cl_2) with flavone to yield 3-chloroflavone with the former and 2,3,3-trichloroflavanone with the latter reagent.

While SO_2Cl_2 is a well known chlorinating agent, $SOCl_2$ does not always behave as one and we suggest the following mechanism for the formation of 3-chloroflavone from the reaction of thionyl chloride with flavone.

The dipolar form (a) reacts with $SOCl_2$ forming the chlorosulphite b, from which c is formed by extrusion of sulphur monoxide, known to be in equilibrium with SO_2 and elemental sulphur.^{3,4} Neutralization of the positive charge on c leads to the 3-chloroflavone d.

The present paper also gives a detailed account of our work on the reaction of the above reagents with 6-methyl- and 7-methoxy-flavones which give some very interesting results.

6-Methylflavone⁵ on reaction with excess of $SOCl_2$ at the reflux temperature of C_6H_6 afforded (4%) the expected 3-chloro-6-methyl flavone (I), whose structure is

consistent with spectral, analytical and chemical properties: IR (nujol) 1670 (CO) (1645 cm⁻¹ in original flavone) 1620, 1570, 1490, 820, 770, 700 (aromatic), 645 (C--Cl) cm⁻¹. Hydrolysis of I with 1% alcoholic KOH gave 2-benzoyl-5-methyl-coumaranone (Ia), whose structure was established on the basis of its spectral data and by the colouration (olive green) with alcoholic FeCl₃, IR (nujol) 1615 (CO-hydrogen bonded), 1560, 1530, 910, 800, 785, 685 (aromatic) cm⁻¹.

When 6-methylflavone was treated with excess of SO₂Cl₂ in CCl₄, two products were obtained, and separated by fractional crystallisation from EtOH. The less soluble was assigned as 3-chloro-6-dichloromethylflavone (II) on the basis of its analysis, spectra and chemical properties. The IR spectra showed bands at $v_{(nujol)}$ 1645 (CO), 1615, 1560, 1495, 770, 740, 700 (aromatic), 645 (C—Cl) cm⁻¹ whereas the NMR (CDCl₃) spectrum showed signals at : δ 8·38 (H₅, 1H, d, J = 2.5 c/s; δ 8·01 (H₇, 2', 6', 3H, b.m.); δ 7·65 (H₈, 3',4',5',4H, b.m.); δ 6·85 (1H, S, CHCl₂). A comparison of the NMR of II with that of 6-methylflavone showed the disappearance of the Me protons at δ 2·44, as well as the H₃ proton at δ 6·78, which confirmed the structure II. Further, when II was hydrolysed with 1% alcoholic KOH, two compounds were isolated which were separated by column chromatography (silica gel). The first eluted with C₆H₆ was found to be 3-chloro-6-formylflavone (IIa) on the basis of its IR spectrum (nujol): 1695 (CO of CHO), 1660 (CO of flavone), 1610, 1565, 1495, 760, 690 (aromatic), 655 (C—Cl) cm⁻¹. The presence of a formyl group in IIa was further confirmed by the preparation of a 2,4-dinitrophenylhydrazone.

The second compound from hydrolysis eluted with MeOH was found to be 2benzoyl-5-formylcoumaranone (IIb). Its structure was in agreement with its analytical, spectral data, IR (nujol) 1695 (CO of CHO), 1615 (CO-hydrogen bonded), 1595, 1575, 1540, 765, 710, 685 (aromatic) cm⁻¹, its colouration (green) with alcoholic FeCl₃ and solubility in aqueous NaHCO₃, indicating the presence of an enolic OH group.

The second compound obtained by the reaction of 6-methyl flavone with SO_2Cl_2 (6%) was found to be 6-dichloromethyl-2,3,3-trichloroflavanone (III), the structure of which was in agreement with its spectra and chemical properties: IR (nujol): 1725² (CO), 1615, 1595, 1495, 740 (aromatic), 640 (C—Cl) cm⁻¹; NMR (CDCl₃) δ 8·28 (H₅, 1H, d, J = 2.5 c/s); δ 8·03 (H₇, 2',6',3H, b.m.); δ 7·51 (5H, b.m.); δ 6·81 (1H, S, CHCl₂). A comparison of the NMR of III with that of 6-methylflavone also showed the disappearance of the Me and H₃ protons. Refluxing III with 1% alcoholic alkali yielded an acid which from analogy with our previous observations² was assigned the structure as 3-carboxy-2,3-dichloro-5-formyl-2-phenyl-2,3-dihydrobenzofuran (IIIa). This structure was supported by the formation of a 2,4-D.N.P. as well as its IR (nujol): 3200 (broad OH of COOH), 1685 (CO of COOH), 1605, 1540, 1495, 790, 775, 700 (aromatic), 640 (C—Cl) cm⁻¹.

The reaction of 7-methoxyflavone⁶ with excess of SOCl₂ afforded a single compound which was found to be 3-chloro-7-methoxyflavone (IV); IR (nujol): 1660 (CO), 1605, 1555, 1490, 775, 690 (aromatic) cm⁻¹.

The reaction of 7-methoxyflavone with SO_2Cl_2 in CCl_4 gave four compounds which were separated by PLC followed by fractional crystallisation. The first compound was assigned the structure 3,8-dichloro-7-methoxyflavone (V), (R_f value in C_6H_6 0·22). This structure is in full agreement with its spectral-analytical data and chemical properties IR (nujol) 1665 (CO). 1615, 1610, 1590, 1490, 820, 780, 770, 690 (aromatic). 635 (C--Cl) cm⁻¹, NMR (CDCl₃). δ 8-43 (H₅, 1H, d, J = 8.5 c/s, 2.5 c/s); δ 8·11 (H_{2'}, 6', 2H, b.m.); δ 7·66 (H_{3'}, 4', 5', 3H, b.m.); δ 7·23 (H₆, 1H, d, J = 8.5 c/s); δ 4·1 (3H, S, OCH₃). The shifting of the carbonyl frequency from 1645 cm⁻¹ (in 7-methoxyflavone) to 1665 cm⁻¹ in V is an indication that the H₃ proton is chlorinated. A comparison of the NMR of V with that of 7-methoxyflavone showed the disappearance of the H₃, and H₈ protons, indicating replacement by chlorine. Further, in the NMR of V the H₅ and H₆ protons clearly show an orthocoupling suggesting that the H₅ and H₆ protons are free. In order to confirm the structure, V was refluxed with 1% alcoholic KOH when the expected 2-benzoyl-7-chloro-6-methoxycoumaranone (Va) was obtained. This structure (Va) was supported by an olive green colouration with alcoholic FeCl₃ and IR (nujol): 1620 (CO, hydrogen bonded), 1600, 1570. 1490, 760 (aromatic) cm⁻¹.

The second compound obtained above was found to be 7-methoxy-3,6,8-trichloroflavone (VI) (R_f value in C₆H₆ 0.62). The suggested structure was in agreement with its spectral data, IR (nujol): 1665 (CO), 1600, 1585, 1545, 1490, 770, 760, 690 (aromatic) cm⁻¹, NMR (CDCl₃) δ 8·20 (H₅, 1H, s); δ 8·03 (H_{2'}, 6', 2H, b.m.); δ 7·56 (H_{3'}, 4', 5', 3H, b.m.); δ 4·05 (3H, s, OCH₃). The shifting of the carbonyl frequency from 1645 cm⁻¹ (in 7-methoxyflavone) to 1665 cm⁻¹ in VI indicated that the H₃ proton was chlorinated. Also a comparison of the NMR of VI with that of 7-methoxyflavone showed the disappearance of H₃, H₆ and H₈ protons while the H₅ proton appeared as a singlet.

The third compound was found to be 2,3,3,8-tetrachloro-7-methoxy-flavanone (VII) (R_f value in C_6H_6 0.88). Its structure was supported by spectral, analytical data, IR (nujol): 1725 (CO), 1600, 1560, 1490, 820, 790, 770, 700, 690 (aromatic), 635 (C--Cl) cm⁻¹, NMR (CDCl₃); δ 8.25 (H₅. 1H, d, J = 8.5 c/s); δ 8.21 (H_{2'}, 6', 2H, b.m.); 7.50 (H_{3'}, 4', 5', 3H, b.m.); δ 7.05 (H₆, 1H, d, J = 8.5 c/s); δ 4.10 (3H, S, OCH₃). The shifting of the carbonyl frequency from 1645 cm⁻¹ (in 7-methoxy flavone) to 1725 cm⁻¹ (in VII) was suggestive of the 2,3,3-trichloroflavanone structure. In the NMR spectrum of VII, the H₃ and H₈ protons disappeared while H₅ and H₆ protons appeared in the spectrum as a doublet and were orthocoupled.

The fourth compound obtained from 7-methoxyflavone was found to be 7-methoxy-2,3,3,6-tetrachloroflavanone (VIII) (R_f value C₆H₆ 0.95). The suggested structure was in agreement with its spectra, IR (nujol): 1720 (CO), 1600, 1495, 780, 740, 690 (aromatic). 635 (C--Cl) cm⁻¹, NMR (CDCl₃), δ 8·1 (H₅, 1H, s); δ 8·00 (H_{2'}, 6', 2H, b.m.); δ 7·52 (H_{3'}, 4', 5', 3H, b.m.); δ 6·73 (H₈, 1H, s); δ 3·96 (3H, s, OCH₃). Here also, the carbonyl frequency was shifted to 1720 cm⁻¹ whereas in the NMR spectrum the disappearance of the H₃ and H₆ protons was observed. The H₅ and H₈ protons appeared as singlets as expected.

EXPERIMENTAL

3-Chloro-6-methylflavone I. To a soln of 6-methylflavone (500 mg) in dry C_6H_6 (5 ml) SOCl₂ (5 ml) was added and the mixture refluxed. After 5 hr. more SOCl₂ (5 ml) was added. In all SOCl₂ (15 ml) was added and the mixture refluxed for 15 hr. SOCl₂ was removed under vacuum, and the solid mass obtained. dissolved in EtOH and cooled. when colourless needles (20 mg) separated, recrystallised from EtOH (charcoal) m.p. 135°. (Found: C. 70.80; H, 4.13; CL 13.30. Calc. for $C_{16}H_{11}O_2Cl$: C. 70.97; H, 4.06; Cl, 13.12%).

2-Benzoyl-5-methylcoumaranone Ia. To a soln of I (200 mg) in EtOH (10 ml) was added 1% alcoholic KOH (14 ml) and the mixture refluxed for 4 hr. After cooling and acidified with HCl, the mix was diluted with H₂O and cooled when a yellow mass separated. Filtering, washing with H₂O, and recrystallisation from EtOH-H₂O gave fine yellow needles (120 mg), m.p. 113-114° (lit.⁷ m.p. 112°). (Found: C, 76·40; H. 505. Calc. for $C_{16}H_{12}O_3$: C. 76·19; H. 4·76%).

3-Chloro-6-dichloromethylflavone II. 6-Methylflavone (1 g) dissolved in dry CCl₄ (10 ml) was added to SO_2Cl_2 (20 ml) and the mixture refluxed for 15 hr. SO_2Cl_2 was removed under vacuum by repeated addition of CCl₄. The thick liquid obtained was dissolved in EtOH and allowed to cool when a white solid (400 mg) separated. It was recrystallised from EtOH as white silky needles. m.p. 182–183°. (Found : C. 56-90; H. 2.51; Cl. 31.5. Calc. for $C_{16}H_9O_2Cl$ C. 56-53; H. 2.65; Cl. 31.23%).

The mother liquor of the above was concentrated and kept in a refrigerator when III separated as yellow needles, m.p. $111-115^{\circ}$. Repeated crystallisation from EtOH (charcoal) afforded colourless needles. 100 mg m.p. $138-139^{\circ}$. (Found: C. 47.29; H. 2.35; Cl. 43.1. Calc. for $C_{16}H_9O_2Cl_5$: C. 47.08; H. 2.20; Cl. 43.38%).

3-Chloro-6-formylflavone IIa. To a soln of II (200 mg) in EtOH (10 ml) was added 1% alcoholic KOH (14 ml) and the mixture refluxed for 4 hr. Then cooled, acidified with HCl, diluted with H₂O till turbidity obtained and cooled when yellow product separated. TLC (silica gel; 2% MeOH in C₆H₆) showed two compounds, separated by column chromatography (silica gel). IIa was eluted with C₆H₆ as a white solid, and crystallised from C₆H₆-pet. ether. as white silky needles, (80 mg) m.p. 198°. (Found: C, 67·50; H, 3·33; Cl. 12·10. Calc. for C₁₆H₉O₃Cl: C, 67·60; H, 3·16; Cl. 12·32%). (2.4-D.N.P. m.p. 322°. (Found: N, 12·10. Calc. for C₂₂H₁₃O₆N₄: N, 12·06%).

The second compound eluted with MeOH was treated with NaHCO₃ aq soln and filtered. The filtrate on acidification gave a yellow solid (30 mg) crystallised from EtOH-H₂O as fine yellow needles (IIb). m.p. 145°. (Found: C, 72.54; H. 3.97. Calc. for $C_{16}H_{10}O_4$: C, 72.14; H. 3.70%). It gave an olive green colouration with alcoholic FeCl₃.

3-Carboxy-2.3-dichloro-5-formyl-2-phenyl-2.3-dihydrobenzofuran IIIa. A soln of III (200 mg) in EtOH (10 ml) was added to 1% alcoholic KOH soln (14 ml) and the mixture refluxed for 4 hr. Then cooled, acidified with HCl, diluted with H_2O and cooled. The solid which separated was filtered, washed with H_2O treated with NaHCO₃ aq, and filtered. The filtrate was acidified with HCl, the white solid which separated was filtered and washed with H_2O . Crystals from C_6H_6 -pet. ether as white needles, (30 mg) m.p. 181°. (Found: C, 57·20; H. 3·1; Cl. 21·20. Calc. for $C_{16}H_{10}O_4Cl_2$: C. 56·97; H. 2·96; Cl. 21·06%). 2.4-D.N.P.: m.p. 248-249°.

3-Chloro-7-methoxyflavone IV. SOCl₂ (5 ml) was added to a soln of 7-methoxyflavone (500 mg) in dry C_6H_6 (7 ml) and the mixture refluxed for 15 hr with addition of SOCl₂ (5 ml) at 5 hr intervals (total 15 ml). SOCl₂ was removed under vacuum and the solid obtained dissolved in EtOH. H₂O was added till turbidity obtained, and kept in a refrigerator. The white globules which separated were purified by column chromatography (silica gel). The fraction eluting with C_6H_6 was crystallised from C_6H_6 -pet. ether as white globules. (50 mg) m.p. 119–120°. (Found: C. 67-00; H, 3-71; Cl. 11-98. Calc. for $C_{16}H_{11}O_3Cl$: C. 67-48; H. 3-86; Cl. 12-04%).

3.8-Dichloro-7-methoxyflavone (V). 7-Methoxyflavone (500 mg) was dissolved in dry CCl₄ (5 ml). SO₂Cl₂ (10 ml) was added, the mixture refluxed for 15 hr and the SO₂Cl₂ removed under vacuum. The residue obtained was dissolved in EtOH (50 ml) and cooled when white needles separated out. It was

purified by PLC (silica gel) $R_f 0.22$ (C₆H₆). Compound extracted with CHCl₃ and the solid obtained after removal of solvent was crystallised from EtOH as white needles, 80 mg, m.p. 208. (Found: C. 60.05; H. 3.50; Cl. 22.00. Calc. for C₁₆H₁₁O₃Cl₂: C. 59.81; H. 3.11; Cl. 22.11%).

Mother liquor of above was concentrated and kept in a refrigerator when a solid separated. TLC showed four compounds having R_f 0.22 identical with above compound (V); 0.62 (VI); 0.88 (VII); 0.95 (VIII) (C₆H₆), which were separated by a PLC (silica gel in C₆H₆). The portion of silica gel corresponding to R_f (0.62) was removed and extracted with CHCl₃. Removal of solvent gave VI (20 mg) crystallised from EtOH-EtOAc as white needles, m.p. 192^c. (Found: C, 54·30; H, 3·03; Cl, 29·49. Calc. for C₁₆H₉O₃Cl₃: C, 54·00; H, 2·59; Cl, 29·67%).

The portion of the silica gel corresponding to the two R_f values (0.88 and 0.95) was together extracted with CHCl₃. Removal of CHCl₃ gave an oil, dissolved in EtOH, and cooled when VII (30 mg) separated as a colourless solid. It recrystallised from EtOH as colourless cubes, m.p. 169°. (Found: C, 49·10; H, 3·00; Cl, 36·40. Calc. for C₁₆H₁₀O₃Cl₄: C, 48·97; H, 2·55; Cl, 36·22%).

The mother liquor from above was concentrated, cooled and colourless stout needles of VIII (20 mg) separated, purified by recrystallisation, m.p. 204°. (Found: C, 49-00; H, 2-83; Cl, 36-40. Calc. for $C_{16}H_{10}O_3Cl_4$: C, 48-97; H, 2-55; Cl, 36-22%).

2-Benzoyl-7-chloro-6-methoxycoumaranone Va. To a soln of V (100 mg) in EtOH (5 ml) was added 1% alcoholic KOH (7 ml) and the mixture refluxed for 4 hr. After cooling it was acidified with HCl, diluted with H₂O and kept in a refrigerator when a yellow compound separated, filtered, washed with H₂O and treated with NaHCO₃ aq and filtered. The yellow solid obtained on acidification of the filtrate was crystallised from aqueous EtOH as fine yellow needles, 60 mg, m.p. 142°. (Found: C, 63·40; H, 3·92; Cl, 11·71. Calc. for C₁₆H₁₁O₄Cl: C, 63·47; H, 3·63; Cl, 11·73%).

Acknowledgement—The authors thank Dr R. S. Kapil of C.D.R.I., Lucknow. for NMR and Shri. R. S. Gopinath, I.I.T., Bombay, for IR spectra.

REFERENCES

- ¹ J. R. Merchant and D. V. Rege, Tetrahedron Letters 3589 (1969)
- ² J. R. Merchant and D. V. Rege, Chemical Comm 380 (1970)
- ³ G. Büchi and G. Lukas, J. Am. Chem. Soc. 86, 5654 (1964)
- ⁴ H. Zeise, Z. Physik. Chem. B51, 120 (1942)
- ⁵ S. Ruhemann, Ber. Dtsch. Chem. Ges. 46, 2193 (1913)
- ⁶ Emilewiz and Kostanecki, Ibid. 32, 312 (1899)
- ⁷ K. Auwers, *Ibid.* **43**, 2198 (1910)